|
donkeyrock shared this story from |
Revisionist history is looking back at past events in light of more recent information. What really happened? And no recent source of information has been more important when it comes to revising the history of digital communications than former National Security Agency (NSA) contractor Edward Snowden. Today I’m really curious about the impact of the NSA on the troubled history of Ultra Wide Band (UWB) communication.
I stumbled on this topic with the help of a reader who pointed me at a story and then a paper about advances in secure communication. Scientists at the University of Massachusetts came up with a method of optical communication that they could mathematically prove to be immune to snooping or even detection up to a certain bit rate. To an eavesdropper who didn’t know what to listen for or when to listen for it the communication just looks like noise.
“Who knew that people were actually thinking about replacing IP communications?” asked my reader. “This paper is interesting in that point-to-point communications uses Layer-1 for the entire signal. I had been thinking Layer-2, but here is secure Layer-1 communications.”
But it looked a lot like Ultra Wide Band to me.
Many readers won’t remember, but UWB was a big story about 12 years ago. I wrote a couple of columns on the subject back then and it looked very promising. The venture capital community thought so too, putting about $1 billion into a number of UWB startups, all of which to my knowledge eventually failed. But why did they fail?
UWB would not have replaced IP communications in that senders and receivers might still have used IP addresses to identify themselves if they chose to do so, but it promised to replace nearly all of the machinery inside big chunks of Internet, bringing secure multi-gigabit wireless communications to LANs and WANs alike.
The UWB startup that got the most press back then was called Time Domain and the name says a lot about how the technology worked. Rather than using specific frequencies UWB transmitted on all frequencies at the same time. The key was knowing when and where in the frequency band to expect a bit to appear. Two parties with synchronized clocks and codebooks could agree that at 10 nanoseconds after the hour at a certain frequency or range of frequencies a bit would appear if one was intended. The presence of that signal at …read more
Source: Donkeyrock_BlurBlog
